The biharmonic problem and progress in the development of analytical methods for the solution of boundary-value problems
نویسندگان
چکیده
A comparative analysis of harmonic and biharmonic boundary-value problems for 2D problems on a rectangle is given. Some common features of two types of problems are emphasized and special attention is given to the basic distinction between them. This distinction was thoroughly studied for the first time by L. N. G. Filon with respect to some plane problems in the theory of elasticity. The analysis permits to introduce an important aspect of the general solution of boundary-value problems. The procedure for solving the biharmonic problem involves both the method of homogenous solutions and the method of superposition. For some cases involving self-equilibrated loadings on one pair of sides of the rectangle, the complete solution, including calculation of the quantitative characteristics of the displacements and stresses, is given. The efficiency of the numerical implementation of the general solutions is shown. The analysis of the quantitative data allows to elucidate some main points of the Saint-Venant principle.
منابع مشابه
GENERAL SOLUTION OF ELASTICITY PROBLEMS IN TWO DIMENSIONAL POLAR COORDINATES USING MELLIN TRANSFORM
Abstract In this work, the Mellin transform method was used to obtain solutions for the stress field components in two dimensional (2D) elasticity problems in terms of plane polar coordinates. the Mellin transformation was applied to the biharmonic stress compatibility equation expressed in terms of the Airy stress potential function, and the boundary value problem transformed to an algebraic ...
متن کاملMultiple solutions for a perturbed Navier boundary value problem involving the $p$-biharmonic
The aim of this article is to establish the existence of at least three solutions for a perturbed $p$-biharmonic equation depending on two real parameters. The approach is based on variational methods.
متن کاملThe Development and Application of the RCW Method for the Solution of the Blasius Problem
In this research, a numerical algorithm is employed to investigate the classical Blasius equation which is the governing equation of boundary layer problem. The base of this algorithm is on the development of RCW (Rahmanzadeh-Cai-White) method. In fact, in the current work, an attempt is made to solve the Blasius equation by using the sum of Taylor and Fourier series. While, in the most common ...
متن کاملAn optimal analytical method for nonlinear boundary value problems based on method of variation of parameter
In this paper, the authors present a modified convergent analytic algorithm for the solution of nonlinear boundary value problems by means of a variable parameter method and briefly, the method is called optimal variable parameter method. This method, based on the embedding of a parameter and an auxiliary operator, provides a computational advantage for the convergence of the approximate soluti...
متن کاملA Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems
In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...
متن کامل